Bankruptcy prediction using Extreme Learning Machine and financial expertise

نویسندگان

  • Qi Yu
  • Yoan Miché
  • Eric Séverin
  • Amaury Lendasse
چکیده

Bankruptcy prediction has been widely studied as a binary classification problem using financial ratios methodologies. In this paper, Leave-One-Out-Incremental Extreme Learning Machine (LOO-IELM) is explored for this task. LOO-IELM operates in an incremental way to avoid inefficient and unnecessary calculations and stops automatically with the neurons of which the number is unknown. Moreover, Combo method and further Ensemble model are investigated based on different LOO-IELM models and the specific financial indicators. These indicators are chosen using different strategies according to the financial expertise. The entire process has shown its good performance with a very fast speed, and also helps to interpret the model and the special ratios. & 2013 Published by Elsevier B.V.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Predictive System for detection of Bankruptcy using Machine Learning techniques

Bankruptcy is a legal procedure that claims a person or organization as a debtor. It is essential to ascertain the risk of bankruptcy at initial stages to prevent financial losses. In this perspective, different soft computing techniques can be employed to ascertain bankruptcy. This study proposes a bankruptcy prediction system to categorize the companies based on extent of risk. The prediction...

متن کامل

Comparison of Bankruptcy Prediction Models with Public Records and Firmographics

Many business operations and strategies rely on bankruptcy prediction. In this paper, we aim to study the impacts of public records and firmographics and predict the bankruptcy in a 12month-ahead period with using different classification models and adding values to traditionally used financial ratios. Univariate analysis shows the statistical association and significance of public records and ...

متن کامل

Corporate Financial Distress and Bankruptcy Prediction in the North American Construction Industry

This paper seeks to explore the application of Altman’s bankruptcy prediction model in the construction industry by measuring its percentage accuracy on a dataset consisting of 108 bankrupt and non-bankrupt firms selected across the timeline of 1985-2013. The main goal of this paper is to explore the predictive power of an expanded variable set tailored to the construction industry compared to ...

متن کامل

The effect of feature selection on financial distress prediction

Financial distress prediction is always important for financial institutions in order for them to assess the financial health of enterprises and individuals. Bankruptcy prediction and credit scoring are two important issues in financial distress prediction where various statistical and machine learning techniques have been employed to develop financial prediction models. Since there are no gene...

متن کامل

Bankruptcy Prediction by Supervised Machine Learning Techniques : A Comparative Study

It is very important for financial institutions which are capable of accurately predicting business failure. In literature, numbers of bankruptcy prediction models have been developed based on statistical and machine learning techniques. In particular, many machine learning techniques, such as neural networks, decision trees, etc. have shown better prediction performances than statistical ones....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2014